The OK Dinghy was designed in 1957 by Knud Olsen and was adopted as an International Class in 1972.
INDEX

PART I – ADMINISTRATION
Section A – General
A.1 Language 4
A.2 Abbreviations 4
A.3 Authorities 4
A.4 Administration of the Class .. 4
A.5 World Sailing Rules 4
A.6 Class Rules Variations 4
A.7 Class Rules Amendments ... 5
A.8 Class Rules Interpretation ... 5
A.9 International Class Fee and
 World Sailing Building Plaque 5
A.10 Sail Numbers 5
A.11 Hull Certification 5
A.12 Initial Hull Certification 6
A.13 Validity of Certificate 6
A.14 Hull Re-Certification 6
A.15 Retention of Certification
 Documentation 6
Section B – Boat Eligibility
B.1 Class Rules and Certification 7
B.2 Event Inspection 7
B.3 Event Limitation Marks 7

PART II – REQUIREMENTS AND
LIMITATIONS
Section C – Conditions for Racing
C.1 General 8
C.2 Crew 8
C.3 Personal Equipment 8
C.4 Advertising 8
C.5 Portable Equipment 9
C.6 Hull 9
C.7 Hull Appendages 10
C.8 Rig 11
C.9 Sails 12

Section D – Hull
D.1 Parts 14
D.2 General 14
D.3 Hull Shell 15
D.4 Deck 15
D.5 Buoyancy Tanks &
 Bulkheads 15
D.6 Gunwale and Rubbing
 Strakes 16
D.7 Assembled Hull 16

Section E – Hull Appendages
E.1 General 20
E.2 Centreboard 20
E.3 Rudder, Rudder Blade,
 Rudder Stock and Tiller 21

Section F – Rig
F.1 General 22
F.2 Mast 22
F.3 Boom 24
F.4 Running Rigging 25

Section G – Sails
G.1 General 25
G.2 Sail 25

PART III – APPENDICES
H.1 Measurement Diagrams 29
H.2 Official Plans 36
H.3 Definitions 36
INTRODUCTION

The intention of the OK Dinghy class rules is to ensure that the boats are as alike as possible in all respects affecting performance. However, within these rules, variations in the construction of the boats are permitted.

International OK Dinghy hulls, hull appendages, rigs and sails are measurement controlled.

OK Dinghy sails may be measured under World Sailing’s In House Certification (IHC) programme.

OK Dinghy hulls, hull appendages, booms and sails may be built by any manufacturer.

OK Dinghy masts shall only be manufactured by a licensed builder except when constructed from wood or aluminium alloy when there is no restriction. These class rules apply to both licenced and un-licenced mast builders.

OK Dinghy hulls, hull appendages, rigs and sails may, after having left the manufacturer, only be altered to the extent permitted in Section C of the class rules.

Owners and crews should be aware that compliance with rules in Section C may NOT be checked as part of the certification process.

Rules regulating the use of equipment during a race are contained in Section C of these class rules, in ERS Part I and in the Racing Rules of Sailing.

This introduction only provides an informal background and the International OK Dinghy class rules proper begin on the next page.

PLEASE REMEMBER

THESE RULES ARE CLOSED CLASS RULES WHERE IF IT DOES NOT SPECIFICALLY SAY THAT YOU MAY – THEN YOU SHALL NOT.

COMPONENTS, AND THEIR USE, ARE DEFINED BY THEIR DESCRIPTION.
PART I – ADMINISTRATION

Section A – General

A.1 LANGUAGE
A.1.1 The official language of the class is English and in case of dispute over any translation, the English text shall prevail.
A.1.2 The word “shall” is mandatory and the word “may” is permissive.

A.2 ABBREVIATIONS
A.2.1 MNA World Sailing Member National Authority
OKDIA International OK Dinghy Class Association
NCA National Class Association
ERS Equipment Rules of Sailing
RRS Racing Rules of Sailing
IHC In House Certification (World Sailing)

A.3 AUTHORITIES
A.3.1 The international authority of the class is World Sailing, which shall co-operate with the OKDIA in all matters concerning these class rules.
A.3.2 Neither World Sailing, an MNA, the OKDIA, an NCA, a certification authority or an official measurer are under any legal responsibility in respect of these class rules and the accuracy of measurement, nor can any claim arising from these be entertained.
A.3.3 Notwithstanding anything contained herein, the certification authority has the authority to withdraw a certificate and shall do so on the request of World Sailing.

A.4 ADMINISTRATION OF THE CLASS
A.4.1 The administering authority is the OKDIA. Except as provided for under A.4.2, the certification authority shall be the MNA. The MNA may delegate part or all of its functions, as stated in these class rules, to a NCA.
A.4.2 In countries where there is no MNA, or the MNA does not wish to administrate the class, its administrative functions as stated in these class rules shall be carried out by the OKDIA which may delegate the administration to an NCA.

A.5 WORLD SAILING RULES
A.5.1 These class rules shall be read in conjunction with the ERS.
A.5.2 Except where used in headings, when a term is printed in “bold” the definition in the ERS applies and when a term is printed in “italics” the definition in the RRS applies.
A.5.3 The class plans, measurement form and measurement diagram are complementary to these class rules.

A.6 CLASS RULES VARIATIONS
A.6.1 At World, Continental or Regional Championships the Notice of Race and/or Sailing Instructions may change the class rules only with the agreement of the OKDIA and World Sailing.
A.6.2 At National events the Notice of Race and Sailing Instructions may change the class rules only with the agreement of the NCA and the MNA.
A.6.3 At any other class events, these class rules shall not be changed by the Notice of Race and Sailing Instructions.

A.7 CLASS RULE AMENDMENTS
A.7.1 Amendments to these class rules are subject to the approval of World Sailing in accordance with World Sailing Regulations.

A.8 CLASS RULES INTERPRETATIONS
A.8.1 Interpretation of class rules or discrepancy between the class rules, measurement form and measurement diagram shall be made in accordance with World Sailing Regulations.

A.9 WORLD SAILING BUILDING PLAQUE
A.9.1 The builder shall pay the Building Plaque Fee on each boat built, whether or not it is subsequently measured and registered. World Sailing Building Plaques may be purchased by the builder from the NCA or from OKDIA when the NCA does not want to administer or where there is no NCA. A receipt shall be issued bearing the same number as the Plaque.

A.10 SAIL NUMBERS
A.10.1 Sail numbers shall be issued by the certification authority on receipt of evidence that the Building Plaque Fee has been paid.
A.10.2 Sail numbers shall be issued in consecutive order starting at “1”.
A.10.3 In countries where consecutive numbering has not been applied, they shall start from a number approved by the OKDIA.
A.10.4 Personal Sail Numbers (PSN) may be issued by the NCA of the sailors’ MNA. Personal Sail Numbers are additional to the sail numbers issued to all boats. If the use of a Personal Sail Number is likely to cause confusion, a Race Committee may require that a boat use the sail number issued to that boat or another agreed number. The NCA shall issue official OKDIA PSN certificates.

A.11 HULL CERTIFICATION
A.11.1 No boat shall take part in racing unless it has a valid measurement certificate in the owner’s name. The measurement certificate is only valid if the owner is a current member of a NCA or, if there is no NCA in their nation, a member of the OKDIA.
A.11.2 A certificate shall record the following information:
(a) Class.
(b) Certification authority.
(c) Sail number issued by the certification authority.
(d) World Sailing Building Plaque number.
(e) Owner.
(f) Craft identification number (CIN) where appropriate.
(g) Builder/Manufacturers details.
(h) Date of issue of initial certificate.
(i) Name of the original measurer.
(j) Date of issue of current certificate.
(k) Total weight of the hull as measured in C.6.1.
(l) Total weight of corrector weights.
(m) Number and position of correctors weights and their weight as per C.6.2.
(n) Signature of owner.

A.12 INITIAL HULL CERTIFICATION
A.12.1 For a certificate to be issued to a hull not previously certified:
(a) Certification control shall be carried out by the official measurer who shall complete the appropriate documentation.
(b) The documentation and certification fee, if required, shall be sent to the certification authority.
(c) Upon receipt of a satisfactorily completed documentation and certification fee, if required, the certification authority may issue a certificate.

A.13 VALIDITY OF CERTIFICATE
A.13.1 A hull certificate becomes invalid upon:
(a) the change to any items recorded on the hull certificate as required under A.11.2.
(b) withdrawal by the certification authority,
(c) the issue of a new certificate.

A.14 HULL RE-CERTIFICATION
A.14.1 The certification authority may issue a certificate to a previously certified hull:
(a) when it is invalidated under A.13.1(a) or (b), after receipt of the old certificate, and certification fee if required.
(b) when it is invalidated under A.13.1 (c), at its discretion.
(c) in other cases, by application of the procedure in A.12.

A.15 RETENTION OF CERTIFICATION DOCUMENTATION
A.15.1 The certification authority shall:
(a) retain the original documentation upon which the current certificate is based.
(b) upon request, transfer this documentation to the new certification authority if the hull is exported.
A.15.2 The NCA shall send the OKDIA details of certificates issued with the names and addresses of the owners.
Section B – Boat Eligibility

For a boat to be eligible for racing, it shall comply with the rules in this section.

B.1 CLASS RULES AND CERTIFICATION
B.1.1 The boat shall:
(a) be in compliance with the class rules.
(b) have a valid hull certificate.
(c) have valid certification marks where applicable.

B.2 EVENT INSPECTION
B.2.1 The equipment inspectors for an event should be appointed by the Organising Authority or by the Race Committee when delegated to them, except that for World and Continental Championships they shall first be approved by the OKDIA. The role of equipment inspectors at an event is to verify that equipment has not been subsequently altered since it was originally measured (other than as is permitted within these rules) using whatever inspection methods they deem appropriate. Should this comparison reveal deviation greater than what the equipment inspector considers to be within the rules, the matter shall be reported to the Race Committee and Jury.

B.3 EVENT LIMITATION MARKS
B.3.1 Where an event uses event limitation marks these marks shall not be removed during the event. If an event limitation mark becomes damaged or lost this shall be reported to the Race Committee or Event Technical Committee as soon as practical.
PART II – REQUIREMENTS AND LIMITATIONS

The crew and the boat shall comply with the rules in Part II when racing. In case of conflict Section C shall prevail.

The rules in Part II are closed class rules. Certification control and equipment inspection shall be carried out in accordance with the ERS except where varied in this Part.

Section C – Conditions for Racing

C.1 GENERAL

C.1.1 RULES

(a) RRS 42.3(c) is changed to add: "When the sail is pumped it shall be done with the mainsheet turning through at least three blocks between the boom and the crew. The final block shall be securely fastened in the cockpit area."

C.2 CREW

C.2.1 LIMITATIONS

(a) The crew shall consist of 1 person.

(b) No crew is permitted to take part in racing unless he/she is a member of his/her NCA. If there is no NCA, then the crew must be a member of a NCA approved by the OKDIA. Any crew that takes part in racing in contravention of this rule may be disqualified without a hearing.

C.3 PERSONAL EQUIPMENT

C.3.1 MANDATORY

The crew shall wear a personal flotation device to the minimum standard ISO 12402:5 (CE 50 Newtons), or EN393, or USCG Type III, or AUS PFD II, or equivalent, and suitable for their size and weight, except for short periods when changing or adjusting clothing.

C.3.2 TOTAL WEIGHT

The total weight of worn clothing and equipment shall not exceed 10 kg, weighed as per RRS Appendix H.

C.4 ADVERTISING

C.4.1 LIMITATIONS

Advertising may be displayed only in accordance with World Sailing Regulation 20 - Advertising Code.
C.5 PORTABLE EQUIPMENT
C.5.1 FOR USE
(a) MANDATORY
(1) GPS tracking devices and cameras, if required by the Sailing Instructions.
(b) OPTIONAL
(1) Any electronic or mechanical timing devices.
(2) Not more than two compasses are permitted on board. If electronic, the compass shall only display heading, tacking angle, timing and internal information relating to the compass.
(3) Any mechanical wind indicators.
(4) Any hand bailers and/or buckets.
(5) Any anchor which may be compulsory if stated in the Notice of Race AND Sailing Instructions
(6) Any consumables.
(7) Any writing equipment.
(8) Any spares such as ropes, fittings and tools.

C.5.2 NOT FOR USE
(a) MANDATORY
(1) Any floating towing rope with a minimum length of 10 m of not less than 6 mm in diameter, and which shall be accessible without opening a watertight bulkhead.

(b) OPTIONAL
(1) One paddle.
(2) Mooring line.
(3) Flags.
(4) Bags.
(5) Anchor warps.
(6) Fenders.

C.6 HULL
C.6.1 WEIGHT

<table>
<thead>
<tr>
<th></th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>The hull weight in dry condition including fixed compass(s), pulley blocks attached to the hull and all control lines but excluding the mainsheet.</td>
<td>72 kg</td>
<td></td>
</tr>
</tbody>
</table>

C.6.2 CORRECTOR WEIGHTS
(a) **Corrector weights** of not more than 10 kg are allowed.
(b) If the weight of the **hull** is under the minimum limit, **corrector weights** of not more than 5 Kg and of approximately equal weight and made of any material shall be fastened so as to touch the aft face of the bulkhead at station 2 and situated within an area of 150 mm athwartships, 150 mm vertical and 80 mm aft from the intersection point of the **sheerline** and station 2 bulkhead.
(c) Additional **corrector weights** of not more than 5 kg and of approximately equal weight and made of any material may be used and shall only be attached to the underside of the deck at bow and transom

C.6.3 MODIFICATIONS, MAINTENANCE AND REPAIR

The following is permitted without re-*certification* or approval of the **certification authority**. Unless stated otherwise items mentioned in this section may be obtained from any manufacturer or supplier.

MODIFICATIONS

(a) Holes may be made in the **hull** for the fixing of fittings.

(b) Any line bags, and additional fairleads, cleats, jammers and pad eyes, may be placed in the **hull**.

MAINTENANCE

(c) Routine maintenance such as small repairs, painting, sanding and polishing is permitted without re-measurement and re-*certification*.

REPAIR

(d) The **hull** may be altered or repaired provided that it continues to comply with the **class rules**.

C.6.4 LIMITATIONS

(a) Only one **hull** shall be used during an event, except when lost or unintentionally damaged beyond repair. Such replacements shall be made only with the approval of the Event Technical Committee.

(b) Inspection hole covers and drainage plugs shall be kept in place and closed, except for short periods of time when items are placed or removed.

(c) The distance from the masthead halyard sheave to the top of the transom at the centreline shall not change by more than 100 mm between the **mast** being in its most aft position to its most forward position, with the **mast** facing fore/aft.

(d) The distance from the masthead halyard sheave to the top of the transom at the centreline shall not change by more than 150 mm between the **mast** being in its most aft position when facing fore/aft and the **mast** being in its most forward position when the **mast** is rotated through 90 degrees to the centreline.

C.7 HULL APPENDAGES

C.7.1 MODIFICATIONS, MAINTENANCE AND REPAIR

The following is permitted without re-*certification* or approval of the **certification authority**. Unless stated otherwise items mentioned in this section may be obtained from any manufacturer or supplier.

MODIFICATIONS

(a) The fixings and fastenings of the **hull appendages** may be replaced by any fixing and fastening.

MAINTENANCE

(b) Routine maintenance such as small repairs, painting, sanding and polishing, is permitted without re-measurement and re-*certification*.

REPAIR

(c) **Rudders** and **centreboards** may be altered or repaired providing that they continue to comply with the current **class rules**.
C.7.2 LIMITATIONS
(a) Any number of hull appendages may be used during an event. If required by the Notice of Race or Sailing Instructions, not more than one centreboard and one rudder may be used during an event, except when a hull appendage has been lost or unintentionally damaged beyond repair. Such replacements shall be made only with the approval of the Event Technical Committee.
(b) When a metal centreboard (aluminium or otherwise) needs to be replaced, it may only be replaced by an aluminium centreboard of maximum thickness of 6 mm and otherwise shall be compliant with section E.2. No other metals are permitted.
(c) Any tiller may be used.

C.7.3 CENTREBOARD
(a) DIMENSIONS

<table>
<thead>
<tr>
<th>Extension below keel, excluding keel bands</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>800 mm</td>
<td></td>
</tr>
</tbody>
</table>

(b) LIMITATIONS
(1) When fully raised the centreboard shall not project below the keel bands.

C.7.4 RUDDER
(a) DIMENSIONS

| The distance from the top leading edge of the rudder, extended in a straight line as necessary, to |
|---|------|------|
| (i) transom at deck level | 45 mm | |
| (ii) transom at hull datum point | 45 mm | |

| Difference between (i) & (ii) | 5 mm | |
| Vertical distance of the intersection of the leading edges of the rudder to the hull datum point. | 50 mm | |

(b) LIMITATIONS
(1) Unless changed by the Notice or Race or Sailing Instructions, lifting rudder blades shall be pinned or bolted in the down position in a separate place from the point at which the rudder blade pivots.
(2) Any safety device shall be fitted to prevent the rudder becoming detached unintentionally.

C.8 RIG
C.8.1 MODIFICATIONS, MAINTENANCE AND REPAIR
The following is permitted without re-certification or approval of the certification authority. Unless stated otherwise, items mentioned in the section may be obtained from any manufacturer or supplier.
MODIFICATIONS
(a) A device shall be fitted to the boom to prevent any part of the sail extending aft of the forward edge of the outer limit mark.
(b) Fittings and **spars** may be modified to accommodate different diameter bolts or rivets.

MAINTENANCE

(b) The **spars** may be re-anodised, polished or painted.

REPAIR

(c) **Masts** and **booms** may be altered or repaired provided that they continue to comply with the current **class rules**, except that alterations or repairs of more than one meter in length to **masts** made from materials other than wood or aluminium alloy, shall only be made by Licensed Mast Builders.

C.8.2 **LIMITATIONS**

(a) Any number of **masts** and **booms** may be used during an event. If required by the Notice of Race or Sailing Instructions, not more than one **boom** and one **mast** may be used during an event, except when an item has been lost or unintentionally damaged beyond repair. Such replacements shall be made only with the approval of the Event Technical Committee.

(b) Any **running rigging** may be used.

(c) The intersection of the aft edge of the **mast spar** and the top of the **boom spar**, each extended as necessary, shall not be below the upper edge of the mast **lower limit mark** when the boom spar is at 90 degrees to the mast **spar**.

(d) The **boom** shall be attached to the **mast** in such a way that the **boom** and the **mast** rotate as one.

(e) There shall be a security device to prevent the **mast** coming out of the **mast** step unintentionally.

(f) The **mast** position shall not be manually adjusted while **racing**.

C.8.3 **MAST**

(a) **DIMENSIONS**

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower point height</td>
<td>265 mm</td>
<td>275 mm</td>
</tr>
</tbody>
</table>

C.9 **SAILS**

C.9.1 **IDENTIFICATION**

National letters and **sail** numbers and **sail** insignia shall conform to RRS Appendix G.

C.9.2 **MODIFICATIONS, MAINTENANCE AND REPAIR**

The following is permitted without re-certification or approval of the **certification authority**. Unless stated otherwise items mentioned in this section may be obtained from any manufacturer or supplier.

MODIFICATION

(a) Addition of tell tales.

(b) Addition of camber stripes.

MAINTENANCE

(c) **Sails** may be cleaned.
REPAIR
(d) Sails may be altered or repaired providing that they continue to comply with the class rules.

C.9.3 LIMITATIONS
(a) Not more than 1 sail shall be carried aboard.
(b) Any number of sails may be used during an event. If required by the Notice of Race or Sailing Instructions, not more than two sails may be used during an event, except when a sail has been lost or unintentionally damaged beyond repair. Such replacements shall be made only with the approval of the Event Technical Committee.
(c) Battens may be placed in the batten pockets

C.9.4 USE
(a) The sail shall be hoisted on a halyard. The arrangement shall permit hoisting and lowering of the sail at sea.
(b) The highest visible point of the sail, projected at 90 degrees to the mast spar, shall not be set above the lower edge of the mast upper limit mark.
(c) The intersection of the leech and the top of the boom spar, each extended as necessary, shall not be behind the fore side of the boom outer limit mark.
(d) Luff and foot bolt ropes shall be in the spar grooves or tracks.
Section D – Hull

D.1 PARTS
D.1.1 MANDATORY
(a) Hull shell.
(b) Deck.
(c) Buoyancy Tanks.
(d) Bulkheads.
(e) Gunwale Rubbing Strakes.

D.1.2 OPTIONAL
(a) Floorboards.
(b) Cockpit liner.

D.2 GENERAL
D.2.1 RULES
(a) The hull shall comply with the class rules in force at the time of initial certification.
(b) Alterations or replacements shall comply with current class rules.

D.2.2 MODIFICATIONS, MAINTENANCE AND REPAIR
(a) Hull repairs shall be carried out so that the boat continues to comply with the class rules. Only materials listed in D.3.1 may be used for repairs.

D.2.3 DEFINITIONS
(a) HULL DATUM POINT
The hull datum point is the intersection of the transom and the bottom hull panels at the lowest point of the transom, extended if necessary and excluding the keel band.
(b) At the measurement stations, the centre plane measurement points of the hull are at the intersection of the bottom panels, extended if necessary and excluding the keel band.
(c) At the measurement stations, the chine points of the hull are at the intersection of the topside and bottom panels, extended if necessary.
(d) At the measurement stations, a sheerline gauge as shown in diagram H.1.10, shall be used to find the sheerline.
(e) A cockpit liner is a moulded cockpit incorporating the bulkheads at stations 1 and 2. It may include a centreboard case cover, topside panels, flanges to connect with the hull shell and a moulding to hold the main-sheet block. All parts shall be made from GRP and/or GRP sandwich only.

D.2.4 IDENTIFICATION
(a) The World Sailing Building Plaque shall be permanently placed by the builder on the starboard side of the aft cockpit bulkhead.
(b) The hull shall carry the sail numbers and national letters, in figures not less than 20 mm high, either cut out, burned or engraved into either
(1) the hog
(2) the centreboard case in the cockpit
(3) on the bulkhead at station 2 on the centreline
(4) a plaque of any permitted material permanently attached to the
bulkhead at station 2 on the centreline.

D.2.5 MANUFACTURERS
(a) The hull may be built by any amateur or professional builder.

D.3 HULL SHELL

D.3.1 MATERIALS
(a) The hull shell, including the centreboard case, shall be built from one or a combination of:
 (1) Wood (solid or laminated)
 (2) GRP sandwich or wood sandwich
 (3) GRP

(b) The hull may be covered with resin, gelcoat, paint, varnish or vinyl.

D.3.2 CONSTRUCTION
(a) Hull shell and centreboard case thickness is optional, except that for foam sandwich construction it shall not exceed 25 mm including stringers.

(b) Thickness of the hull shell, including any cockpit liner, with the exception of stringers, framing, deck and transom, shall be within 10% along the length of the boat. No attempt shall be made to concentrate weight at any point. If it is suspected that this rule is being broken, an equipment inspector or an official measurer may authorise test holes to be drilled in the skin or structure. (For the purpose of this rule the thickness shall not include either paint, non-skid paint in the cockpit, fairing filler or repairs, reinforcements for the mast step, drain tube, bracket for mainsheet block or pads to secure flotation, or joins in the core).

(c) Single skin wood boats may have an extra layer of plywood, with a maximum thickness of 4 mm, added on the cockpit floor from a maximum of 50 mm aft of station 1 to a maximum of 50 mm forward of station 2.

(d) The surface of the hull may be checked with a flexible batten to ensure the curvature of the hull is fair.

(e) When measured athwartships at the stations, the surface of the hull and topsides shall not be concave.

D.4 DECK

D.4.1 MATERIALS
(a) The deck shall be built from one or a combination of:
 (1) Wood (solid or laminated).
 (2) GRP sandwich or wood sandwich.
 (3) GRP.

(b) The deck may be covered with resin, gelcoat, paint, varnish or vinyl.

D.4.2 CONSTRUCTION
(a) Deck thickness shall not exceed 25 mm.

(b) The sheerline between stations 1 & 2 shall not be convex.

(c) Measured athwartships the fore and aft decks shall not be concave.

(d) A breakwater may be fitted between the mast and the mainsheet horse or track.
(e) Struts to support the side-decks are permitted. The sum total side cross sectional area of the struts shall not exceed 50 cm².

(f) Cockpit liners are allowed. The cockpit including bulkheads and any centreboard case cover and mouldings for attaching fittings may be made in one piece and attached into the hull shell providing that the finished hull complies with the measurements and rules in D.3, D.5 and D.7.2. Notwithstanding D.3.2.b, the joined topside panels may have an extra 2 mm of thickness to allow for glue. Centreboard case covers are permitted and shall not be wider than 90 mm at any point. Any connecting flange from the liner to the floor shall not be wider than 70 mm. For the purpose of this rule the flange may extend around any fittings on the floor such as bailers and mainsheet fixing brackets, providing they are all part of the same moulding. Any void between the centreboard case cover and case sides must be able to be inspected.

D.5 BUOYANCY TANKS AND BULKHEADS

D.5.1 MATERIALS

(a) The buoyancy tanks and bulkheads shall be built from one or a combination of:
 (1) Wood (solid or laminated)
 (2) GRP sandwich or wood sandwich
 (3) GRP

(b) The bulkheads may be covered with resin, gelcoat, paint, varnish or vinyl.

D.5.2 CONSTRUCTION

(a) Bulkhead thickness shall not exceed 12 mm for wood or GRP sandwich with a wood or cormat core, or 20 mm for GRP sandwich with a foam or end grain balsa core.

(b) Two buoyancy tanks shall be formed by three watertight bulkheads. All the space aft of the cockpit shall form a buoyancy tank. All the space between the bulkhead at station 2 and the bulkhead forward of station 3 shall form a buoyancy tank.

(c) Each tank shall have at least one and not more than three inspection holes if their covers are unthreaded and an unlimited number if the covers are threaded.

(d) Each inspection hole shall have a watertight detachable cover capable of resisting accidental dislodgement.

(e) Each tank may have a maximum of two drain holes into the cockpit.

(f) Control lines passing through buoyancy tanks shall be inside watertight tubes.

(g) The mast compartment (the area forward of the front bulkhead) shall drain into the cockpit through a tube.

(h) A minimum of 0.12 m³ of closed cell expanded plastic foam material shall be securely fixed in the buoyancy tank forward of the cockpit.

(i) Any buoyancy material may be added under the side decks to a point not lower than 80 mm below the sheerline. This buoyancy shall not be included in the requirements of D.5.2 (h).

(j) The corners between the deck and bulkheads at stations 1 and 2 may be bevelled or shaped. Measured from the hull datum point, no part of the
bevel or shape forward of 1809 mm or aft of 785 mm shall be below the sheer.

D.6 GUNWALE AND RUBBING STRAKES

D.6.1 MATERIALS
The gunwale and rubbing strakes shall be built from one or a combination of:
(a) Wood (solid or laminated).
(b) GRP.

D.6.2 CONSTRUCTION
(a) Gunwales shall run the full length of the boat.

D.6.3 LIMITATIONS
(a) Gunwales shall not be positioned above the adjacent sheerline.

D.7 ASSEMBLED HULL

D.7.1 FITTINGS
(a) MANDATORY
 (1) Any towing eye on the foredeck near the stem head.
 (2) Any mast step.
 (3) Keel bands shall be fixed to the keel line of the hull. They shall run both sides of the centreboard case slot and may be faired together at either end. They may be part of the hull mould if built from GRP. They shall be built from one or a combination of:
 i. Wood (solid or laminated).
 ii. GRP.
 iii. Metal.
 iv. Plastic.

(b) OPTIONAL
 (1) Any fittings.
 (2) Any mast bearings for mast step and deck that may be adjustable.
 (3) Any floorboards.
 (4) Any self-bailers.
 (5) Any sheeting and centreboard hoists.
 (6) Any mainsheet track with one traveller or horse.
 (7) Any bracket or block to fasten a mainsheet block on floor or case.
 (8) Any foam floor mats for non-slip with max thickness of 6mm.
 (9) Any hiking pads, fitted to the side-decks and gunwales, provided they fall within the side deck measurements in D.7.2. However, padding up to 10 mm thick is allowed to cover the sheerline measured 90 degrees to the surface and shall not be more than 10 mm above the sheerline on the gunwale.

(c) LIMITATIONS
 (1) Toe straps shall not extend outboard.
 (2) The mainsheet track may extend outboard to the topside panel. If the side deck profile is cut away for this purpose, the panel on which the track sits shall satisfy the side-deck dimension rules.
(3) Fittings made from exotic materials and/or CRP shall only be attached and shall not be integral to the hull, deck or cockpit including the internal structure. Any wear patches, protective pads and backing pads made from exotic materials and/or CRP shall not be recessed into these areas. For the purpose of this rule, exotic is defined in H.3.

(4) The use of exotic materials (excluding EVA foam) and/or CRP is limited to wear patches, protective and backing plates, compass brackets, cleats, fairleads, pad eyes, blocks, traveller supports, gudgeons, pintles, hiking pads, mast bearings and chocks, mast bearing adjusting mechanisms and block organiser wings when they do not incorporate a mast bearing.

(5) Hiking pads made from CRP, GRP, timber and exotics shall not exceed 550 mm in length and are limited to one per side.

(6) The size and weight of all fittings, backing plates and their fastenings shall be fit for purpose and shall not be used to alter the weight distribution of the hull.

D.7.2 DIMENSIONS

The keel line shall be taken as the intersection line from the transom to the stem of the hull shell and the hull centre plane.

The sections shall be taken as vertical, transverse planes at the following positions:

<table>
<thead>
<tr>
<th>Station</th>
<th>From hull datum point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station 0</td>
<td>0 mm</td>
</tr>
<tr>
<td>Station 1</td>
<td>800 mm</td>
</tr>
<tr>
<td>Station 2</td>
<td>1800 mm</td>
</tr>
<tr>
<td>Station 3</td>
<td>2800 mm</td>
</tr>
</tbody>
</table>

The baseline shall be on the centre plane of the hull at the following vertical distances below the bottom of the hull as defined in D.2.3 (b):

<table>
<thead>
<tr>
<th>At the hull datum point</th>
<th>200 mm from the hull shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>At station 3</td>
<td>28 mm from the hull shell</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hull length excluding deck overlap but including any stem band</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>3990 mm</td>
<td>4010 mm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertical distance from baseline to bottom of hull shell</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>At station 1</td>
<td>85 mm</td>
<td>105 mm</td>
</tr>
<tr>
<td>At station 2</td>
<td>0 mm</td>
<td>16 mm</td>
</tr>
<tr>
<td>At 3500 mm forward of hull datum point</td>
<td>90 mm</td>
<td>110 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizontal distance along baseline from hull datum point to top of transom</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 mm</td>
<td>12 mm</td>
<td></td>
</tr>
</tbody>
</table>

<p>| Baseline to chine at Station 0 | 237 mm | 257 mm |</p>
<table>
<thead>
<tr>
<th>Measurement Description</th>
<th>Station 0</th>
<th>Station 1</th>
<th>Station 2</th>
<th>Station 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline to shearline at Station 0</td>
<td>433 mm</td>
<td>453 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline to chine at Station 1</td>
<td>178 mm</td>
<td>198 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline to shearline at Station 1</td>
<td>449 mm</td>
<td>469 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline to chine at Station 2</td>
<td>164 mm</td>
<td>184 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline to shearline at Station 2</td>
<td>482 mm</td>
<td>502 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline to chine at Station 3</td>
<td>216 mm</td>
<td>236 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline to shearline at Station 3</td>
<td>537 mm</td>
<td>557 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline to shearline at stem</td>
<td>588 mm</td>
<td>608 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline to deck at centreline of Station 0</td>
<td>462 mm</td>
<td>482 mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distance from hull datum point measured along base line to a point where extension of straight edge of foreside of stem (included keel band if any) meets base line

<table>
<thead>
<tr>
<th>Distance Description</th>
<th>Station 0</th>
<th>Station 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 mm below baseline</td>
<td>3705 mm</td>
<td>3735 mm</td>
</tr>
<tr>
<td>180 mm below baseline</td>
<td>140 mm</td>
<td>150 mm</td>
</tr>
<tr>
<td>265 mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Horizontal distance from hull datum point to centre of centreboard bolt

<table>
<thead>
<tr>
<th>Distance Description</th>
<th>Station 0</th>
<th>Station 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2390 mm</td>
<td>2410 mm</td>
<td></td>
</tr>
</tbody>
</table>

Radius of chines aft of station 3

<table>
<thead>
<tr>
<th>Radius Description</th>
<th>Station 0</th>
<th>Station 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Length of keelband from hull datum point along keelband

<table>
<thead>
<tr>
<th>Length Description</th>
<th>Station 0</th>
<th>Station 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3500 mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Radius of stem forward of 3500 mm

<table>
<thead>
<tr>
<th>Radius Description</th>
<th>Station 0</th>
<th>Station 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Width of keelband

<table>
<thead>
<tr>
<th>Width Description</th>
<th>Station 0</th>
<th>Station 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 mm</td>
<td>22 mm</td>
<td></td>
</tr>
</tbody>
</table>

Depth of keelband

<table>
<thead>
<tr>
<th>Depth Description</th>
<th>Station 0</th>
<th>Station 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mm</td>
<td>10 mm</td>
<td></td>
</tr>
</tbody>
</table>

Beam of hull, excluding rubbing strakes and fittings:

At shearline

<table>
<thead>
<tr>
<th>Beam Description</th>
<th>Station 0</th>
<th>Station 1</th>
<th>Station 2</th>
<th>Station 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>898 mm</td>
<td>918 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1228 mm</td>
<td>1248 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1408 mm</td>
<td>1428 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1150 mm</td>
<td>1170 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

At chine

<table>
<thead>
<tr>
<th>Beam Description</th>
<th>Station 0</th>
<th>Station 1</th>
<th>Station 2</th>
<th>Station 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>828 mm</td>
<td>848 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1136 mm</td>
<td>1156 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1244 mm</td>
<td>1264 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>816 mm</td>
<td>836 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Horizontal width of side decks

<table>
<thead>
<tr>
<th>Width Description</th>
<th>Station 0</th>
<th>Station 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 mm</td>
<td>240 mm</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Height of side deck assembly above line joining sheerline on opposite sides of the hull</td>
<td>--------</td>
<td>40 mm</td>
</tr>
<tr>
<td>Depth of side deck assembly below line joining sheerline on opposite sides of the hull</td>
<td>--------</td>
<td>80 mm</td>
</tr>
<tr>
<td>Distance from a straight edge placed at right angles to the baseline on bottom panel at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At station 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At station 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At station 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>At station 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>on topside panel at any point (Diag H.1.8)</td>
<td>15 mm</td>
<td>25 mm</td>
</tr>
<tr>
<td>N.B: This measurement (above) shall be taken between the sheerline and the chine and not from the underside of the rubbing strake.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height of continuation of centreline of deck above sheerline at centre of mast</td>
<td>20 mm</td>
<td>40 mm</td>
</tr>
<tr>
<td>Gunwale rubbing strakes; depth (vertically from sheerline); width (horizontally from sheerline)</td>
<td>9 mm</td>
<td>35 mm</td>
</tr>
<tr>
<td>3 mm</td>
<td>35 mm</td>
<td></td>
</tr>
<tr>
<td>Forward face of aft bulkhead from hull datum point</td>
<td>785 mm</td>
<td>815 mm</td>
</tr>
<tr>
<td>Aft face of forward cockpit bulkhead from hull datum point</td>
<td>1779 mm</td>
<td>1809 mm</td>
</tr>
<tr>
<td>Bulkhead at or forward of Station 3 (and aft of mast)</td>
<td>2800 mm</td>
<td>--------</td>
</tr>
<tr>
<td>Radius between bulkheads and hull side or bottom panels</td>
<td>--------</td>
<td>50 mm</td>
</tr>
<tr>
<td>Drain holes into cockpit from forward tanks</td>
<td>--------</td>
<td>2</td>
</tr>
<tr>
<td>Drain holes into cockpit from aft tanks</td>
<td>--------</td>
<td>2</td>
</tr>
<tr>
<td>Diameter of drain holes as above (internal)</td>
<td>10 mm</td>
<td>20 mm</td>
</tr>
<tr>
<td>Diameter of mast compartment drain tube (internal)</td>
<td>10 mm</td>
<td>20 mm</td>
</tr>
<tr>
<td>Diameter of inspection holes in tanks (internal)</td>
<td>85 mm</td>
<td>--------</td>
</tr>
<tr>
<td>Extension into buoyancy tank of covers to holes as above</td>
<td>--------</td>
<td>200 mm</td>
</tr>
<tr>
<td>Total cross sectional area of control line tubes passing through buoyancy tanks</td>
<td>--------</td>
<td>150 cm²</td>
</tr>
<tr>
<td>Control line tubes from centreline of boat</td>
<td>--------</td>
<td>350 mm</td>
</tr>
</tbody>
</table>
Section E – Hull Appendages

E.1 GENERAL

E.1.1 RULES
(a) Hull appendages shall comply with the class rules in force at the time of certification.
(b) Alterations and replacements shall comply with current class rules.

E.1.2 CERTIFICATION
(a) The official measurer shall certify the hull appendages.

E.1.3 MODIFICATIONS, MAINTENANCE AND REPAIR
(a) Hull appendages shall not be altered in any way except as permitted by these class rules.

E.1.4 MANUFACTURERS
(a) The hull appendages may be built by any amateur or professional builder.

E.2 CENTREBOARD

E.2.1 MATERIALS
(a) The centreboard shall be built from one or a combination of:
 (1) Wood (solid or laminated).
 (2) GRP sandwich or wood sandwich.
(b) Centreboards may be covered with gelcoat, resin, paint or varnish.
(c) Protective strips of any materials are optional and may be integral to the centreboard.

E.2.2 CONSTRUCTION
(a) The profile of the measured part of the centreboard (excluding any pivot slot) shall be within two lines; one 5 mm outside and the other 5 mm inside the profile shown on the measurement diagram, when the pivot point in the centreboard lies on the pivot point shown on the measurement diagram.
(b) A slot may be made between the pivot point in the centreboard and the perimeter.
(c) A device shall be fitted to prevent accidental dislodgement off the pivot.

E.2.3 FITTINGS
(a) OPTIONAL
 (1) Fittings to control the position of the centreboard are optional.

E.2.4 DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td></td>
<td>20 mm</td>
</tr>
<tr>
<td>Thickness of centreboard above waterline as shown on diagram (inside 20 mm from edges)</td>
<td>10 mm</td>
<td></td>
</tr>
<tr>
<td>Width of pivot slot</td>
<td>------</td>
<td>12 mm</td>
</tr>
<tr>
<td>Free movement of centreboard on pivot bolt</td>
<td>------</td>
<td>2 mm</td>
</tr>
</tbody>
</table>
Width of protective strip from profile edge as defined in the measurement diagram

<table>
<thead>
<tr>
<th></th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness below the waterline as shown on the measurement diagram.</td>
<td>-----------</td>
<td>20 mm</td>
</tr>
<tr>
<td>Width of protective strip from profile edge as defined in the measurement diagram</td>
<td>-----------</td>
<td>20 mm</td>
</tr>
</tbody>
</table>

E.3 RUDDER, RUDDER BLADE, RUDDER STOCK AND TILLER

E.3.1 MATERIALS

(a) The **rudder** shall be built from one or a combination of the following materials.

1. (1) Wood (solid or laminated).
2. (2) GRP sandwich or wood sandwich.

(c) **Rudders** may be covered with gelcoat, resin, paint or varnish.

(d) The **rudder** stock material, where used, is optional.

(e) The tiller material is optional.

(f) The tiller extension material is optional.

(g) Protective strips of any material are optional and may be integral to the **rudder** or **rudder blade**.

E.3.2 CONSTRUCTION

(a) The **rudder** shall consist of either a **rudder blade** or a **rudder stock** incorporating a **rudder blade**.

(b) The arrangement of **rudder blade**, **rudder stock**, tiller and tiller extension is optional except that:

1. (1) A tiller shall not be made integral to a **rudder blade** using exotic materials or CRP.
2. (2) A **rudder stock** made from exotic materials or CRP shall only be fastened to a **rudder blade**.

(c) The profile of the measured part of the **rudder** shall be within two lines; one 5 mm outside and the other 5 mm inside the profiles (either Profile 1 or Profile 2) as shown on the measurement diagram.

(d) Lifting **rudders** shall be able to be fixed in the down position with a pin or bolt separate from the pivot bolt.

E.3.3 FITTINGS

(a) OPTIONAL

1. (1) Any fittings are optional.

(b) LIMITATIONS

1. (1) Fittings made from exotic materials or CRP shall not be integral to the **rudder** blade.

E.3.4 DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness below the waterline as shown on the measurement diagram.</td>
<td>-----------</td>
<td>20 mm</td>
</tr>
<tr>
<td>Width of protective strip from profile edge as defined in the measurement diagram</td>
<td>-----------</td>
<td>20 mm</td>
</tr>
</tbody>
</table>
Section F – Rig

F.1 GENERAL

F.1.1 RULES
(a) The spars and their fittings shall comply with the class rules in force at the time of certification of the spar.
(b) Alterations and replacements shall comply with current class rules.
(c) The running rigging shall comply with these class rules.

F.1.2 CERTIFICATION
(a) The official measurer shall certify the mast and boom.
(b) No certification of running rigging is required.

F.1.3 MODIFICATIONS, MAINTENANCE AND REPAIR
(a) Spars shall not be altered in any way except as permitted by these class rules.

F.1.4 DEFINITIONS
(a) MAST DATUM POINT
The mast datum point is at deck level on the aft centreline face of the mast.
(b) A spar section is defined as the extrusion, moulding or tube that forms the basis of the spar.

F.1.5 MANUFACTURER
(a) The mast and boom may be built by any amateur or professional builder, except that a licence is required for mast sections built using any materials other than wood or aluminium alloy, and subsequent alterations of more than one metre in length.
(b) Mast licenses shall be issued by the OKDIA. The terms of the OKDIA Mast Building Licence may be subject to review from time to time by World Sailing and the OKDIA.

F.2 MAST

F.2.1 IDENTIFICATION
(a) If the mast section is built using any materials other than wood or aluminium alloy the licenced builder shall permanently fix an official OKDIA mast label on the front of the mast, just above the gooseneck.

F.2.2 MATERIALS
(a) The mast spar section shall be built from one or a combination of the following materials:
(1) Wood (solid or laminated).
(2) Aluminium alloy.
(3) GRP.
(4) CRP.
(5) ARP.
(b) Masts may be anodised, painted or varnished.
(c) The material for an external sail track is optional.
(d) The material for the mast base and deck ring is optional.

F.2.3 CONSTRUCTION
(a) The mast spar shall include a fixed sail groove or track which may or may not be integral with the mast section.
(b) The aft side of the sail track or groove shall be constructed straight and the line of the track or groove, extended if necessary, shall be not more than 10 mm outside the aft edge of the mast bearing ring at the deck.
(c) The cross section shape of a mast shall be a single geometrical figure and shall have no hollows on the outside with the exception of the sail track or groove.
(d) Mast sections may be made as a two-piece or a three-piece section.
(e) The only permitted additional items to the mast construction are:
 (1) External sail track
 (2) Internal connecting sleeves (when spar is a two or a three-piece section).

F.2.4 FITTINGS
(a) MANDATORY
 (1) With the exception of wood spars, a fixed fork fitting to connect the boom.
(b) OPTIONAL
 (1) Other fittings are optional.

F.2.5 DIMENSIONS

<table>
<thead>
<tr>
<th>Mast spar cross section; diameter at deck level incl. optional mast ring</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>diameter at 20 mm above heel point</td>
<td>70 mm</td>
<td>76 mm</td>
</tr>
<tr>
<td>Mast spar transverse cross section at;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>from heel point to 1000 mm above mast datum point</td>
<td>62 mm</td>
<td>-------</td>
</tr>
<tr>
<td>from 1000 mm above mast datum point to upper point minimum dimension is</td>
<td></td>
<td></td>
</tr>
<tr>
<td>given by a uniform reduction of every 100 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>upper point</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mast spar fore-and-aft cross section at;
From heel point to upper point maximum dimensions is given by the actual transverse width Plus 22 mm at the same height.

<table>
<thead>
<tr>
<th>Mast spar curvature at any point</th>
<th>10 mm</th>
<th>50 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower mast limit mark width</td>
<td>10 mm and all above the upper point</td>
<td></td>
</tr>
<tr>
<td>Upper mast limit mark width</td>
<td>5400 mm</td>
<td>-------</td>
</tr>
</tbody>
</table>

* Lower point to upper point 5400 mm -------

Boom forks on mast:

<table>
<thead>
<tr>
<th>Internal width</th>
<th>32 mm</th>
<th>40 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of boom pin hole</td>
<td>14 mm</td>
<td>18 mm</td>
</tr>
<tr>
<td>Centre of pin hole from aft face of mast</td>
<td>-------</td>
<td>39 mm</td>
</tr>
<tr>
<td>Centre of pin hole below lower point</td>
<td>33 mm</td>
<td>37 mm</td>
</tr>
<tr>
<td>Distance from lower point to centre of gravity</td>
<td>1430 mm</td>
<td>-------</td>
</tr>
</tbody>
</table>

F.2.6 WEIGHT

<table>
<thead>
<tr>
<th>Mast weight including mast base, deck ring, halyard, cleat, permanently attached blocks, any corrector weights, and excluding gooseneck pin</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 kg</td>
<td>-------</td>
<td></td>
</tr>
</tbody>
</table>

F.2.7 CORRECTOR WEIGHTS

Corrector weights of not more than 1.5 kg are permitted and shall be permanently attached to the external surface of the mast.

F.3 BOOM

F.3.1 MATERIALS

(a) The boom spar section shall be built from one or a combination of the following materials:

1. Wood (solid or laminated).
2. GRP.
3. Aluminium alloy.

(b) Boom sections may be anodised, painted or varnished

(c) Any material may be used for an external sail track.

F.3.2 CONSTRUCTION
(a) The **boom** spar shall include a fixed sail groove or track which may or may not be integral with the **boom** section.

(b) The construction method of the **boom** is optional.

F.3.3 FITTINGS

(a) **OPTIONAL**

 (1) Any fittings are optional.

F.3.4 DIMENSIONS

<table>
<thead>
<tr>
<th>Boom spar cross section forward of the outer point:</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical from 200 mm aft of the gooseneck hole transverse</td>
<td>50 mm</td>
<td>90 mm</td>
</tr>
<tr>
<td>Outer limit mark width</td>
<td>10 mm</td>
<td>------</td>
</tr>
<tr>
<td>Distance from outer point to centre of the gooseneck hole in boom</td>
<td>------</td>
<td>2640 mm</td>
</tr>
</tbody>
</table>

F.4 RUNNING RIGGING

F.4.1 MATERIALS AND CONSTRUCTION

(a) Materials and construction are optional.

F.4.2 FITTINGS

(a) Fittings are optional.

Section G – Sails

G.1 GENERAL

G1.1 RULES

(a) **Sails** shall comply with the **class rules** in force at the time of **certification**.

(b) Alterations and replacements shall comply with the current **class rules**.

G1.2 CERTIFICATION

(a) **Sails** shall carry the official OKDIA sail label, purchased by the sailmaker from OKDIA. It shall be permanently attached near the tack by stitching across it.

(b) The **official measurer** shall **certify** sails by stamping, or signing and dating, across the official OKDIA Sail label.

(c) World Sailing or an MNA may appoint one or more persons at a sailmaker to measure and **certify** sails produced by that manufacturer in accordance with the World Sailing In-House Certification Guidelines.

G1.3 SAILMAKER

(a) No licence is required.
G.2 SAIL

G.2.1 IDENTIFICATION
(a) The class insignia shall have a height of 200 mm +/- 20 mm and a width of 335 mm +/- 20 mm.

G.2.2 MATERIALS
(a) The ply fibres shall consist of polyester.
(b) Stiffening shall consist of:
 (1) Corner-boards: plastic or aluminium.
 (2) Battens: Material optional.
(c) Sail reinforcement shall consist of:
 (1) Primary reinforcement: Any permitted material.
 (2) Secondary reinforcement: as per ERS definition.

LIMITATIONS
(d) Sail makers are only permitted to build sails from laminated sail cloth upon request and approval by the OKDIA Technical Committee and on a sail by sail basis. For laminate sails only, rules G.2.3 (a), (b) & (c) and all dimensions from G.2.4 except leech length, half & three quarter widths and top width shall not apply, if the approval document from the OKDIA is presented when measuring. The use of those sails is allowed in any OK regatta with the exception of International events.

G.2.3 CONSTRUCTION
(a) The construction shall be: soft sail, single ply sail.
(b) The body of the sail shall consist of the same woven ply throughout.
(c) A foot shelf of not more than 300 mm width is permitted to be of a different material. For the purpose of this rule a foot shelf is defined as a panel or panels of material, attached to the body of the sail and which is continuous between the clew eye and the tack eye and which shall taper to a point at the tack eye and clew eye.
(d) The sail shall have 4 batten pockets in the leech.
(e) The leech above the upper batten pocket shall not extend beyond a straight line, drawn from the aft head point to the upper edge of the upper batten pocket.
(f) The following are permitted: Stitching, glues, webbing, woven and PTFE tapes, bolt ropes, corner eyes, headboard with fixings, Cunningham: one eye or not more than two pulleys, batten pocket patches, batten pocket elastic, batten retaining devices, boom slides, leech line, windows, tell tales, sail shape indicator stripes, headboard slides not extending more than 175 mm from the head point and items as permitted or prescribed by other applicable rules. All permitted items shall be used for their intended purpose.

G.2.4 DIMENSIONS

<table>
<thead>
<tr>
<th></th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leech length</td>
<td>---------</td>
<td>5425 mm</td>
</tr>
<tr>
<td>Half width</td>
<td>---------</td>
<td>1675 mm</td>
</tr>
<tr>
<td>Three-quarter width</td>
<td>---------</td>
<td>1040 mm</td>
</tr>
<tr>
<td>Top width</td>
<td>---------</td>
<td>160 mm</td>
</tr>
<tr>
<td>Specification</td>
<td>Measurement</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Primary reinforcement</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Secondary reinforcement</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>from sail corner measurement points</td>
<td>1050 mm</td>
<td></td>
</tr>
<tr>
<td>for flutter patches</td>
<td>120 mm</td>
<td></td>
</tr>
<tr>
<td>for batten pocket patches</td>
<td>175 mm</td>
<td></td>
</tr>
<tr>
<td>Tabling width on luff and foot</td>
<td>60 mm</td>
<td></td>
</tr>
<tr>
<td>Tabling width elsewhere</td>
<td>35 mm</td>
<td></td>
</tr>
<tr>
<td>Total window area</td>
<td>0.3 m²</td>
<td></td>
</tr>
<tr>
<td>Window to sail edge</td>
<td>150 mm</td>
<td></td>
</tr>
<tr>
<td>Extension of headboard from head point</td>
<td>175 mm</td>
<td></td>
</tr>
<tr>
<td>Batten pocket length</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>uppermost and lowermost pockets</td>
<td>605 mm</td>
<td></td>
</tr>
<tr>
<td>intermediate pockets</td>
<td>755 mm</td>
<td></td>
</tr>
<tr>
<td>Batten pocket width</td>
<td>60 mm</td>
<td></td>
</tr>
<tr>
<td>Head point to intersection of leech and centreline of uppermost batten pocket</td>
<td>1000 mm 1200 mm</td>
<td></td>
</tr>
<tr>
<td>Clew point to intersection of leech and centreline of lowermost batten pocket</td>
<td>1000 mm 1200 mm</td>
<td></td>
</tr>
<tr>
<td>Head point to nearest point of luff bolt rope</td>
<td>50 mm</td>
<td></td>
</tr>
<tr>
<td>Tack point to nearest point of luff bolt rope</td>
<td>300 mm</td>
<td></td>
</tr>
<tr>
<td>Tack point to nearest point of foot bolt rope</td>
<td>450 mm</td>
<td></td>
</tr>
<tr>
<td>Clew point to nearest point of foot bolt rope</td>
<td>100 mm</td>
<td></td>
</tr>
</tbody>
</table>
PART III – APPENDICES

The rules in Part III are **closed class rules**. Measurement shall be carried out in accordance with the ERS except where varied in this Part.

Section H

H.1 MEASUREMENT DIAGRAMS
OK Dinghy Class Rules

H.1.1 Hull Dimensions at Keel

H.1.2 Hull Dimensions at Station 0

H.1.3 Hull Dimensions at Station 1

H.1.4 Hull Dimensions at Station 2

H.1.5 Hull Dimensions at Station 3

H.1.6 Rounded Chine Measurement Point

Hull Maximum Bottom Panel Curvature Schedule

<table>
<thead>
<tr>
<th>Station</th>
<th>Maximum Curvature Dimension "X" in Fig H.1.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15MM</td>
</tr>
<tr>
<td>1</td>
<td>25MM</td>
</tr>
<tr>
<td>2</td>
<td>30MM</td>
</tr>
<tr>
<td>3</td>
<td>35MM</td>
</tr>
</tbody>
</table>

ST.0: Measurement Station Number

MEL: Measurement Base Line

H.1.7 Hull Maximum Bottom Panel Curvature

INTERNATIONAL OK Dinghy Measurement Diagram

APPENDIX H

Scale 1:25

June 2017
Boom must be above the limit mark when at 90° to the mast.

H.1.18 BOOM LAYOUT

H.1.19 BOOM SECTION

H.1.20 GOOSENECK DIMENSIONS
Shape of after edge is free above right angle line from the leading edge.
H.2 OFFICIAL PLANS
1 General arrangement and construction details 1986
2 Full size details 1986

H.3 DEFINITIONS
Where shown in the class rules – the following abbreviations or descriptions mean:

Fastened – joined using rivets, screws or bolts.
Attached – joined using sealant or glue. May also be fastened.
Integral – joined using ARP, GRP or CRP. May also be attached and/or fastened.

GRP (Glass Reinforced Plastic) – A composite material made from glass fibres bonded with polyester, epoxy or vinylester resin.
CRP (Carbon Reinforced Plastic) – A composite material made from carbon fibre bonded with polyester, epoxy or vinylester resin.
ARP (Aramid Reinforced Plastic) - A composite material made from aramid fibre bonded with polyester, epoxy or vinylester resin.
GRP Sandwich – A composite sandwich material made from glass fibres bonded with polyester, epoxy or vinylester resin and having a core material of foam, wood and/or cormat.
Wood Sandwich – A composite sandwich material made from wood and having a foam core, bonded with polyester, epoxy and/or vinylester resin.

Exotic materials – non metallic materials which may include thermoplastics, thermosets, ceramics and composite products reinforced with materials not defined above.

Effective: 11th May 2020

© World Sailing 2020